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Abstract—Mathematical reasoning remains an ongoing challenge for
AI models, especially for geometry problems, which require both lin-
guistic and visual signals. As the vision encoders of most MLLMs are
trained on natural scenes, they often struggle to understand geometric
diagrams, performing no better in geometry problem-solving than LLMs
that only process text. This limitation is further amplified by the
lack of effective methods for representing geometric relationships. To
address these issues, we introduce the Diagram Formalization Enhanced
Geometry Problem Solver (DFE-GPS), a new framework that integrates
visual features, geometric formal language, and natural language rep-
resentations. Specifically, we propose a novel synthetic data approach
and construct a large-scale geometric dataset, SynthGeo228K, annotated
with formal and natural language captions, designed to enhance the
vision encoder to understand geometric structures better. Our framework
improves MLLMs’ ability to process geometric diagrams and extends
their application to open-ended tasks on the formalgeo7k dataset.

Index Terms—multi-modal large language model, mathematical rea-
soning, geometry problem solver, geometric diagram formalization

I. INTRODUCTION

As large language models (LLMs) improve in mathematical rea-
soning [1]–[3], interest grows in how multi-modal large language
models (MLLMs) can get better at processing visual information
that aids mathematical comprehension [4], [5]. Solving geometry
problems offers a practical way to evaluate MLLMs’ mathematical
reasoning abilities, as both visual diagrams and linguistic context are
essential in this domain. This raises a fundamental question: Can
MLLMs effectively understand geometric diagrams?

Studies indicate that MLLMs often struggle with geometric di-
agrams, showing no significant improvement over LLMs that only
process textual information [6]. As shown in Fig. 1, we further find
that the geometry problem-solving accuracy of MLLMs decreases
when geometric diagrams are introduced, compared to scenarios
where images are absent or blank. Some LLMs perform even better
than MLLMs at solving geometry problems, because MLLMs have
difficulty interpreting these diagrams, which results in MLLMs ex-
tracting incorrect or irrelevant information from them [7], [8].

Several reasons may explain this discrepancy. Most LLaVA-like
architectures [9]–[11] use vision encoders that are pre-trained on
natural scenes, which significantly differ from geometric diagrams
[7]. Additionally, these models lack an effective methodology to
represent geometric relationships.

To address these limitations, we introduce a new framework, the
Diagram Formalization Enhanced Geometry Problem Solver (DFE-
GPS), which incorporates a Diagram Formalizer — a model that
leverages the formal language of these diagrams to improve the

⋆ Equal contribution. �Corresponding author.
Our model and dataset are available at https://github.com/zezeze97/DFE-GPS.

Fig. 1. Comparative performance analysis of MLLMs: Impact of diagram
integration

visual components of the model and boost the LLM’s recognition
of geometric structures. We outline a pre-training task for the vision
encoder focused on diagram formalization and introduce a new
pipeline for generating 228K large-scale geometric diagrams with
both geometric formal language, and natural language descriptions
from scratch utilizing geometry model builder [12]. This approach
addresses the limitation of insufficient and misaligned diagrams in
pre-training [13]. By employing geometric formal language, the
LLM can effectively master properties and relationships of geometric
elements such as points, lines, and triangles and generate human-
readable, step-by-step solutions. Consequently, our model can better
comprehend geometric diagrams. We summarize the contributions as
follows:

1) We introduce the DFE-GPS that integrates visual features,
geometric formal language, and natural language, significantly
enhancing geometric problem-solving as evidenced on the
formalgeo7K test set.

2) We propose a novel synthetic data approach combining geomet-
ric diagrams with formalized language, optimizing vision en-
coder pre-training for better feature extraction from geometric
diagrams. Additionally, we release the SynthGeo228k dataset.

3) We expand geometric problem-solving from multiple-choice
questions to more challenging open-ended question answer-
ing, utilizing GPT-4o-mini to evaluate the step-wise problem-
solving process with the Process Evaluation Score.

II. RELATED WORK

Geometry problem solving (GPS) has attracted substantial attention
within the AI community. This field of study is divided into two GPS
categories: single-modal, which relies solely on linguistic input, and
multi-modal, which combines both vision and language.
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Recognition Instruction

In the given diagram, ∠CAO equals 40 degrees, ∠OBC equals 15 degrees, 
O being the center of circle O. 
ConsCDL: Shape(OCA,AC),Shape(CA, AO,OC),......,Cocircular(O,ABC)
ImgCDL: Equal(MeasureOfAngle(CAO),40), Equal(MeasureOfAngle(OBC),15)

Calibrate CDL Instruction
Reasoning Instruction
Question:  
As shown in the diagram, 
GH=10, 
G is the center of circle G, 
the center of circle J is J, 
the center of ⊙K is K. 
Find the length of line JK

TokenizerMLP

Diagram Encoder

🔥

ConsCDL: Shape(OCA,AC)
          Shape(CA,AO,OC),
          Shape(OA,AB,BO)

             ......
     Cocircular(O,ABC)

ImgCDL: Equal(MeasureOfAngle(CAO),40), 
     Equal(MeasureOfAngle(OBC),15)

(param (A B C) triangle)
(assert (= (uangle B A C) (div pi 4)))
(assert (= (uangle A C B) (div pi 4)))
(define circleO circle (incircle A B C))
(define circleP circle (circumcircle A B C))

🔧  Geo Model Builder 🤔  Translate

triangle ABC,
angle ABC = 90, 
angle BAC = 45, 
angle ACB = 45, 
incircle O of triangle ABC,
circumcircle P of triangle ABC,
diameter AC
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Cocircular(P,ABC)
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Calibrate ConsCDL: Shape(BG,GH,GHB),...,Cocircular(J,GL),Cocircular(G,FLHB)
Calibrate ImgCDL: Equal(LengthOfLine(GH),10)
Reasoning Steps:
Step1: GL = JG + JL, GH = Radius(⊙G)(From common sense and given conditions) 
...
Step 16: JK = 5/2 
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(f) Training Stage 3
Calibrate ConsCDL: Shape(OCA,AC),Shape(CA, AO,OC),......,Cocircular(O,ABC)
Calibrate ImgCDL: Equal(MeasureOfAngle(CAO),40), Equal(MeasureOfAngle(OBC),15)
Reasoning Steps:
Step1: Use the property of isosceles triangles to find that ∠BCO = ∠OBC = 15°.
...
Step 12: Calculate ∠BOA = ⌒OAB = 110°.

MLP

LLM

ConsCDL + ImgCDL

Tokenizer Tokenizer

Perturb Calibrate CDL Instruction
Reasoning Instruction
Question:  
In the given diagram, 
∠CAO equals 40 degrees,
∠OBC equals 15 degrees, 
with O being the center of circle O, 
find the measurement of ∠BOA.

🔥

❄🔥

🎲Diagram Encoder❄
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Model-Generated Reasoning Steps  
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Fig. 2. Our proposed geometric diagram generation pipeline (a), diagram formalization enhanced geometry problem solver (b) and process evaluation score
(c). The three-stage training overview is illustrated in (d, e, f).

Single-modal GPS Alpha Geometry [14] is a neuro-symbolic
system that includes a symbolic deduction engine, achieving per-
formance comparable to an average International Mathematical
Olympiad (IMO) gold medalist. Similarly, FGeo-TP [15] utilizes the
T5 language model to predict theorem sequences within its geometric
formalized system FGPS, solving SAT-level geometric problems.

Multi-modal GPS requires a more complex data integration. This
kind of research focuses primarily on generating theorem sequences
to feed into a symbolic geometry solver. However, inconsistencies
in dataset annotation standards have presented challenges in model
training and performance evaluation [16]–[19].

InterGPS [20] converts text and diagrams into formal language for
theorem prediction, but relies on a pre-constructed theorem knowl-
edge base for final results. Also, PGPSNet [19] uses a Convolutional
Neural Network (CNN) and a Gated recurrent units (GRU)-based
model to generate solution programs, which require an executor for
outputs.

Recent advancements have also explored the use of MLLMs for
GPS. G-LLaVA [7] uses ChatGPT-3.5 to create an augmented dataset,
Geo170K, and trains LLaVA without tuning the vision encoder.
GeoGPT4V [13] uses GPT-4V to simplify complex problems into
geometric QA pairs and generates corresponding images. However,
it relies on the pre-existing questions from the dataset and cannot
independently create diagrams.

III. PROPOSED APPROACH

This section begins with a review of the geometric formal language
used in our approach, followed by an overview of the proposed geo-
metric diagram generation pipeline. We then introduce the Diagram
Formalization Enhanced Geometry Problem Solver (DFE-GPS) and
detail the calculation of the Process Evaluation Score.

A. Preliminary: Geometric Formal Language

The theory of geometry formalization establishes a comprehen-
sive framework for plane geometry. Formalgeo7k [21] is annotated
with Conditional Declaration Language (CDL), which encompasses
construction CDL, text CDL, image CDL, and goal CDL. We
utilize construction CDL (ConsCDL) and image CDL (ImgCDL) to
represent geometric diagrams. ConsCDL conveys geometric structure
information, including basic shapes, collinearity, and cocircularity,
while ImgCDL offers geometric and algebraic relations, such as
segment length and angle relationships.

B. Geometric Diagram Generation

Numerous methods exist for generating geometric diagrams, such
as GeoGebra [22] and MATLAB [23], but these typically require
human interaction and cannot produce a wide range of meaning-
ful diagrams autonomously. In our geometric diagram generation
process, illustration in Fig 2(a), we create templates expressed in
Geometry Model Building Language [12] by adding new shapes.



These templates, which range from single shapes to combinations of
three with different geometric relationships, include basic elements
like points and lines, as well as various triangles, polygons, and
circles. When incorporating new elements, we analyze their geometric
relationships, exploring scenarios such as circle lines intersections,
angle congruences, and various configurations. Each template is
translated into the formal language, ConsCDL, accompanied by
detailed natural language captions specifying the shapes and their
geometric elements. Our dataset, comprising 462 templates, provides
a comprehensive exploration of basic geometry through the rela-
tionships between points, lines, and shapes. The Geometry Model
Builder inherently allows for generating diverse diagrams from a
single template by modifying point positions and orientations, with
rotation being a common data augmentation method. Consequently,
we have successfully generated over 228,000 geometric diagrams,
constituting our SynthGeo228K dataset.

C. Structure and Training Process of DFE-GPS

As shown in Fig. 2(b), our proposed DFE-GPS model integrates
multiple modalities and comprises three main components: a Diagram
Formalizer, a Projection module, and a LLM. Specifically, the LLM
processes three types of inputs: diagram features FD extracted
by the Diagram Encoder, formal diagram language representations
(ConsCDL and ImgCDL) produced by the Diagram Formalizer,
and natural language inputs that include problem statements and
instructions. The Projection module aligns this information within the
LLM’s semantic space, enabling effective integration of these diverse
inputs. As a result, the LLM first calibrates the formal representations
predicted by the Diagram Formalizer to gain a deeper understanding
of the diagram and then generates reasoning steps for problem-
solving. For implementation, we employ the pre-trained SigLIP [24]
as the Vision Encoder, Qwen2-0.5B-Instruct [25] as the Lightweight
LLM, and Yi-1.5-Chat [10] (9B or 34B) as the primary LLM.

The training process consists of three stages, each centered on auto-
regressive generation tasks. Let Tin denote the input text, D represent
the input diagram, and Ttar be the target output. The training goal
is defined by the following loss function:

L = −
N∑
i=1

log p[T i
tar|T

(<i)
tar , Tin,D], (1)

where p(·) represents the multi-modal generative model, T i
tar indi-

cates the i-th token of the target sequence, and N is the length of the
target output. Fig. 2 (d,e,f) illustrates the three-stage training process.

Stage-1: The first stage focuses on training the Diagram Formalizer
module, aiming to generate formalized language descriptions that
correspond to geometric diagrams. During this phase, the parameters
of the Vision Encoder and part of the Lightweight LLM (through
LoRA [26]) are trainable to improve the model’s ability to extract
visual features.

Stage-2: The second stage centers on training the Projection
modules to align vision features with the LLM’s semantic space.
This is achieved by generating natural language descriptions and
formalized expressions for the geometric diagrams. During this stage,
the parameters of the Diagram Encoder and the LLM are frozen,
and only the MLP parameters linking visual features to the language
model are trainable.

Stage-3: In the third stage, instruction fine-tuning enables the
model to calibrate formalized diagram representations and solve
problems. The input consists of geometric diagrams, formalized
descriptions with random perturbations that simulate Diagram For-
malizer errors, accompanied by problem text and calibration and

reasoning instructions. The model learns to calibrate ConsCDL and
ImgCDL, and then generate coherent natural language reasoning to
solve the problem. During this stage, the parameters of the Diagram
Encoder remain fixed, while the MLP and LLM parameters are
trainable. Full parameter tuning is applied to the 9B model, whereas
LoRA tuning is employed for the 34B model.

D. Process Evaluation Score

In addition to verifying the correctness of the final answers
generated by the GPS, evaluating the reasoning process is even more
critical. However, since our model generates solution processes in
natural language, traditional formal methods used for symbol-based
models [16]–[18] are not applicable. To address this challenge, we
propose an evaluation method that leverages LLMs to assess the
generated solution process. As illustrated in Fig.2(c), we input the
model-generated reasoning steps and the reference solution into GPT-
4o-mini, following the provision of tailored evaluation instructions.
The model then reviews each reasoning step and evaluates the process
based on three criteria: calculation accuracy, logical coherence, and
conciseness. The average of these scores constitutes the Process
Evaluation Score (PES).

IV. EXPERIMENTAL RESULTS

A. Datasets and Implementation Details

We develop two datasets from formalgeo7k, namely formalgeo-
structure774k, focusing on geometric diagram formalization, and
formalgeo-reasoning238k, enhanced via LLM-driven data augmen-
tation. We also create the SynthGeo228k dataset using the Geometry
Model Builder. In Stage 1, the Diagram Formalizer is trained for 4
epochs on both formalgeo-structure774k and SynthGeo228k (batch
size 128, LoRA rank 16). Stage 2 involves 1 epoch of training on
formalgeo-structure774k (batch size 256). In Stage 3, the 9B model
undergoes full-parameter fine-tuning on formalgeo-reasoning238k
(batch size 128), while the 34B model is fine-tuned using LoRA
(rank 128, batch size 128). The entire process is accelerated using 8
NVIDIA A800 GPUs.

B. Performance of Diagram Formalizer

Table I presents the performance results of the Diagram Formalizer
on the formalgeo7k test set. The sentence-level accuracy metric
assesses the correctness of individual compositional statements within
the predicted CDL, whereas the full-expression accuracy metric
evaluates the accuracy of the entire predicted CDL. Our Diagram
Formalizer exhibits strong overall performance, with a significant
improvement attributed to the incorporation of synthetic data. In
contrast, excluding synthetic data leads to a considerable decline in
performance, especially in terms of full-expression accuracy.

TABLE I
THE PERFORMANCE OF DIAGRAM FORMALIZER AND ITS VARIANTS ON

THE FORMALGEO7K TEST SET.

Model ConsCDL ImgCDL
Sentence Full Sentence Full

Diagram Formalizer 90.25 72.29 92.88 84.38
w/o Synth-Data 88.85 68.29 90.80 80.57

C. Performance of Geometry Problem Solving

Table II presents a comparative analysis of the problem-solving
performance between state-of-the-art LMMs, MLLMs, and our pro-
posed DFE-GPS on the formalgeo7k test set. Our evaluation signifi-
cantly extends beyond multiple-choice questions to include the more
demanding open-ended questions. In the multiple-choice mode, the



model generates a solution and selects the correct answer from the
provided options. In contrast, in the open-ended mode, the model
independently generates a solution without any provided choices. We
assess the models’ performance by calculating the accuracy of the
final answers across both modes. Furthermore, we utilize GPT-4o-
mini to evaluate the correctness of the reasoning steps produced by
the models, employing the PES.

Overall, the DFE-GPS-34B model exhibits outstanding perfor-
mance across all metrics, achieving an accuracy of 82.38% in the
multiple-choice mode, 75.33% in the open-ended mode, and a process
evaluation score of 79.07. Although our smaller 9B model scores
slightly lower, it still outperforms most other models. The increased
difficulty of the open-ended mode leads to a decrease in accuracy
across most models. Notably, DeepSeek-Prover-V1.5 [27], Yi-VL-
6B [10], and QwenVL [28] fail to comply with instructions in the
multiple-choice mode, often not selecting any of the provided options,
resulting in accuracy rates lower than random guessing (25%).
Within the same model series, larger parameter models demonstrate
superior performance, underscoring the benefits of increased model
size. Furthermore, models specifically trained on mathematical data
(Qwen2-Math [2], DeepSeek-Math [1], G-LLaVA [7]) generally out-
perform general-purpose models. An exception is DeepSeek-Prover-
V1.5, which, despite being trained under the LEAN [29] framework,
performs poorly when confronted with natural language inputs.

TABLE II
PERFORMANCE COMPARISON OF FORMAL ENHANCED GPS AGAINST LMMS

AND MLLMS ON THE FORMALGEO7K TEST SET.

Model Acc PESChoice Open-ended

Llama-3.1-8B-Instruct [30] 26.38 16.57 48.56
Llama-3.1-70B-Instruct 40.86 20.86 56.48

deepseek-math-7b-instruct [1] 36.28 21.62 51.57
DeepSeek-Prover-V1.5-SFT [27] 19.24 34.10 66.14

DeepSeek-Prover-V1.5-RL 20.38 34.67 65.50
Yi-1.5-9B-Chat [10] 33.43 28.48 60.63

Yi-1.5-34B-Chat 38.29 25.62 61.18
Qwen2-7B-Instruct [25] 36.95 25.71 61.26

Qwen2-Math-7B-Instruct [2] 56.38 42.95 71.12
Qwen2-Math-72B-Instruct 57.71 49.81 76.89

Yi-VL-6B [10] 10.00 1.81 31.60
Yi-VL-34B 31.88 3.24 37.50

QwenVL [28] 9.05 1.81 28.91
Qwen2-VL-7B-Instruct [31] 40.10 22.19 61.84

Phi-3-vision-128k-instruct [32] 39.24 14.00 49.47
InternVL-Chat-V1-5 [33] 37.90 16.29 51.47

LLaVA-NeXT-8B [34] 31.52 10.19 48.83
LLaVA-NeXT-72B 34.76 26.38 49.45
G-LLaVA-7B [7] 45.33 15.71 52.20

G-LLaVA-13B 47.81 16.19 52.78
GPT-4-turbo [35] 49.62 38.00 69.63

GPT-4o 47.14 41.62 73.69
GPT-4o-mini 44.76 40.00 69.23

DFE-GPS-9B 77.05 68.67 76.00
DFE-GPS-34B 82.38 75.33 79.07

Beyond the GPT-4 series, MLLMs generally underperform com-
pared to LLMs, likely due to their limited ability to effectively utilize
diagrams. To explore this issue further, we conduct an experiment
comparing the multiple-choice accuracy of MLLMs with and without
the inclusion of images (Table III). While evaluating our model,
we also control for the potential influence of formalized diagram
language. The results indicate that for most MLLMs, incorporating
diagrams often reduces accuracy in solving geometry problems, with
QwenVL exhibiting a particularly notable decline. In contrast, our
model demonstrates improved accuracy with the inclusion of dia-
grams, suggesting that our pre-trained Diagram Encoder effectively
extracts features from diagrams and enhances overall performance.

TABLE III
EFFECTIVENESS OF MLLMS IN UTILIZING DIAGRAMS FOR SOLVING

GEOMETRIC PROBLEMS.

Model Choice Acc ∆w/o D w/ D

QwenVL [28] 19.90 9.05 -10.85
Qwen2-VL-7B-Instruct [31] 43.90 40.10 -3.80

Phi-3-vision-128k-instruct [32] 39.05 39.24 0.19
InternVL-Chat-V1-5 [33] 39.62 37.90 -1.72

LLaVA-NeXT-8B [34] 34.67 31.52 -3.15
G-LLaVA-13B [7] 48.95 47.81 -1.14
GPT-4-turbo [35] 49.14 49.62 0.48

GPT-4o 48.57 47.14 -1.43
GPT-4o-mini 45.90 44.76 -1.14

DFE-GPS-9B w/o CDL 66.10 72.95 6.85

D. Ablation Study

We examine the effects of omitting either Stage 1 or Stage 2
during training (Table IV) and observe significant performance drops,
highlighting the essential role of our three-stage training process.
Notably, Stage 1 pre-training with the Diagram Formalizer is more
crucial than the process Stage 2.

TABLE IV
EVALUATION OF DFE-GPS-9B ACROSS THREE TRAINING STAGES

Training Stages Acc
Stage 1 Stage 2 Stage 3 Choice Open-ended

✓ ✓ ✓ 77.05 68.67
✓ ✓ 75.14 65.05

✓ ✓ 67.33 56.57

To investigate the impact of incorporating geometric formal lan-
guage, we conduct experiments using three solution modes: (1) gen-
erating the solution directly without any CDL input; (2) incorporating
the Diagram Formalizer’s predicted CDL into our model to generate
the solution; (3) building on the second approach by calibrating the
predicted CDL before generating the solution. Table V demonstrates
a progressive improvement in accuracy across these approaches, sug-
gesting that additional geometric formalization enhances the LLM’s
understanding of the diagrams, resulting in more effective problem-
solving.

TABLE V
IMPACT OF DIFFERENT INPUT AND OUTPUT ON OUR 9B MODEL’S

PERFORMANCE ON THE FORMALGEO7K TEST SET.

Input Output Acc
D&Q Pred-CDL Cali-CDL Solution Choice Open-ended

✓ ✓ 72.95 64.76
✓ ✓ ✓ 76.19 67.81
✓ ✓ ✓ ✓ 77.05 68.67

V. CONCLUSION

We have established the Diagram Formalization Enhanced Ge-
ometry Problem Solver (DFE-GPS) as a new and effective multi-
modal large language model to leverage both geometric diagram
and formalized information for solving geometric problems, along
with a novel data generation pipeline for diagram formalization. The
experimental results on the formalgeo7k demonstrate its significant
improvements. Future work may explore reinforcement learning and
tree search strategy to further enhance its performance.
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