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Abstract
Geometric problem solving has always been a long-
standing challenge in the fields of mathematical
reasoning and artificial intelligence. We built a
neural-symbolic system, called FGeo-HyperGNet,
to automatically perform human-like geometric
problem solving. The symbolic component is a
formal system built on FormalGeo, which can au-
tomatically perform geometric relational reasoning
and algebraic calculations and organize the solu-
tion into a hypergraph with conditions as hypern-
odes and theorems as hyperedges. The neural com-
ponent, called HyperGNet, is a hypergraph neural
network based on the attention mechanism, includ-
ing an encoder to effectively encode the structural
and semantic information of the hypergraph and
a theorem predictor to provide guidance in solv-
ing problems. The neural component predicts the-
orems according to the hypergraph, and the sym-
bolic component applies theorems and updates the
hypergraph, thus forming a predict-apply cycle
to ultimately achieve readable and traceable auto-
matic solving of geometric problems. Experiments
demonstrate the correctness and effectiveness of
this neural-symbolic architecture. We achieved
state-of-the-art results with a TPA of 93.50% and
a PSSR of 88.36% on the FormalGeo7K dataset.

1 Introduction
Geometry problem solving (GPS) has always been a long-
standing challenge [Littman et al., 2022; Gowers et al., 2023]
in the fields of mathematical reasoning and artificial intelli-
gence, due to the cross-modal forms of knowledge and the
symbolic-numerical hybrid reasoning process. GPS can be
described as: Given a geometric problem description (origi-
nal images and texts or formalized), the solver needs to im-
plement stepwise reasoning leading to the final answer.

Traditional GPS methods can generally be divided into
three categories. The first category is the synthesis meth-
ods, such as backward search method [Gelernter, 1959], for-
ward chaining method [Nevins, 1975] and deductive database
method [Chou et al., 2000]; the second category is the al-
gebraic methods, such as Wu’s method [Wu, 1978] and

Gröbner bases method [Buchberger, 1988]; the third category
is the point elimination methods based on geometric invari-
ants [Zhang et al., 1995; Chou et al., 1995].

Artificial intelligence technology has provided new per-
spectives for GPS [Seo et al., 2015; Sachan and Xing, 2017;
Gan et al., 2019]. In particular, with the rapid development
of deep learning and the application of large language mod-
els, a series of neural-symbolic methods have been proposed.
These methods can generally be divided into two categories:
Deductive Database methods (DD methods) [Lu et al., 2021;
Peng et al., 2023; Trinh et al., 2024; Wu et al., 2024] and Pro-
gram Sequence Generation methods (PSG methods) [Chen et
al., 2021; Zhang et al., 2023b; Xiao et al., 2024]. DD meth-
ods parse the problem images and texts into a unified formal
language description, and then apply a predefined set of the-
orems to solve the problems. These approaches require the
establishment of a formal system and the problem-solving
process has mathematical rigor and good readability. PSG
methods view GPS as a sequence generation task with multi-
modal input. These methods learn from annotated examples
to map geometric problem descriptions into executable pro-
grams. After program sequences are generated, the executor
computes them step by step and obtain the problem answer.

However, existing research has notable limitations. Most
recent advances in GPS focus on exploring new methods and
models [Xiao and Zhang, 2023], yet they overlook the investi-
gation of geometric formal systems. The theorems and pred-
icates of these formal systems are implemented using pro-
gramming languages, and the definition of new predicates and
theorems necessitates modifications to the solver’s code. This
characteristic significantly hampers the scalability of formal
systems. Most Existing DD methods are non-traceable, and
the redundant theorems applied during heuristic searches can-
not be eliminated. Most Existing PSG methods, on the other
hand, fail to yield a human-like problem-solving process, suf-
fer from low readability, and cannot guarantee the correctness
of results. The process of solving geometric problems en-
compasses both numerical computation and relational reason-
ing, with existing research predominantly focused on numer-
ical problem-solving objectives, struggling to integrate com-
putation and reasoning within a unified framework [Chen et
al., 2022]. This imperfection in the existing formal systems
severely restricts the types and complexity of GPS.

In addition, existing work predominantly focuses on the
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Figure 1: The overall architecture of our proposed neural-symbolic system.

unified cross-modal integration of geometric text and image
[Zhang et al., 2023b; Zhang et al., 2023a] with limited atten-
tion to the embedding of geometric formal languages. Alpha-
Geometry [Trinh et al., 2024] can solve IMO-level geometry
problems, but it treats the solving process as a text sequence
and models GPS as a text generation task, ignoring structural
relationships between conditions. Neglecting of graph struc-
ture information in formal language results in poor theorem
prediction [Guo and Jian, 2022]. S2G [Tsai et al., 2021] maps
the problem-solving process onto an expression tree, implic-
itly incorporating process information, yet it does not reflect
a human-like problem-solving approach. GeoDRL [Peng et
al., 2023] organizes geometric conditions into a Geometric
Logic Graph (GLG), but the GLG lacks information about the
problem-solving process thus fails to model the interrelations
among theorems. Formal language, distinct from natural lan-
guage, adheres to stringent syntactic forms. Its symbols bear
specific meanings and inappropriate tokenization can obliter-
ate the inherent meaning of statements [Ning et al., 2023].
Moreover, due to the unique structure of formal languages,
they are represented as three-dimensional real number matri-
ces, which cannot be processed using common network ar-
chitectures. There is an urgent need for research into the em-
bedding and encoding of formal languages.

We propose a neural-symbolic architecture, named FGeo-
HyperGNet, to address these issues, as illustrated in Figure 1.
The neural component is a hypergraph neural network based
on the attention mechanism, consisting of a hypernode en-
coder and a theorem predictor. The hypernode encoder em-
beds the semantic information of hypernodes and the neigh-
boring edge information into fixed-length real-number vec-
tors, serving as the feature representations of the nodes. The
theorem predictor adopts an encoder-decoder architecture. It
first extracts and fuses the node features obtained by the hy-

pernode encoder to generate a hypergraph encoding. Subse-
quently, it uses a task-specific decoder that receives the hy-
pergraph encoding and the goal encoding to predict the the-
orems required for solving geometric problems. We first use
a self-supervised method to pretrain the hypernode encoder,
making it to retain as much semantic information of formal-
ized statements as possible during the encoding stage. Then
the encoder is build as part of the theorem predictor for end-
to-end training. The symbolic component is a symbolic for-
mal system built on FormalGeo [Zhang et al., 2024c], which
can construct the process of GPS as a directed hypergraph
with conditions as hypernodes and theorems as hyperedges.
This symbolic system can validate and apply the theorems
predicted by the neural component, perform geometric rela-
tional reasoning and algebraic equation solving, and update
the state of the hypergraph.

The neural component predicts theorems according to the
hypergraph, and the symbolic component applies theorems
and updates the hypergraph, thus forming a predict-apply cy-
cle (PAC) to ultimately achieve readable, traceable and ver-
ifiable automatic solving of geometric problems. Addition-
ally, we utilize FGeo-Parser [Zhu et al., 2025] to convert ge-
ometric problem images and text into formalized language.
Benefiting from the structured representation of the problem-
solving process, we define a rule-based Solution Generator to
derive a human-like solution. To the best of our knowledge,
we are the first to construct a geometric problem-solving sys-
tem that takes raw geometric problem images and text as in-
put, produces a human-like solution as output, and ensures
the complete correctness of the solution. Our work presents
a neuro-symbolic framework for GPS, while demonstrating
that hypergraph-structured data can enhance the capabilities
of such methods.

Our contributions are summarized as follows:



1. We introduce HyperGNet, an attention-based hyper-
graph feature embedding and extraction network. Unlike
message-passing models, HyperGNet prioritizes the global
relationships and representations of hypernodes, which are
crucial for addressing the GPS task.

2. We present FGeo-HyperGNet, a neural-symbolic archi-
tecture designed for GPS. The neural component predicts the-
orems required to solve geometric problems based on the hy-
pergraph, while the symbolic component conducts rigorous
geometric relational reasoning and algebraic equation solving
to ensure the correctness of the solution process and update
the hypergraph. Additionally, we propose PAC to clarify the
interaction between the neural and symbolic components.

3. By combining FGeo-Parser, the rule-based solution gen-
erator, and FGeo-HyperGNet, we develop a geometric prob-
lem solving system that takes raw geometric problem images
and text as input, generates a human-like solution as output,
and ensures the complete correctness of the solution.

4. We conducted extensive experiments on the Formal-
Geo7K [Zhang et al., 2024c] dataset, achieving a theorem
prediction accuracy (TPA) of 93.50% and a problem-solving
success rate (PSSR) of 88.36%. Furthermore, we performed
ablation studies on the training methods and model architec-
ture of HyperGNet.

2 Preliminaries
This section outlines the definition of the problem and models
the problem-solving process. We focus on the formal repre-
sentation and solution of plane geometric problems.

2.1 Problem Definition and Modeling
We formulate geometric problems as a collection of condi-
tions and a problem goal and formulate the problem solving
process as the sequential application of theorems. Conse-
quently, the process of solving geometric problems can be
represented as a hypergraph, where conditions are modeled
as hypernodes and theorems as hyperedges. The fundamental
terms and examples are defined below.
Definition 1 Condition (C): Conditions represent a
set of geometric entities, attributes, and relationships.
These conditions encompass geometric and quantita-
tive relationships, such as ”RightTriangle(ABC)” and
”Equal(LengthOfLine(AB),10)”.
Definition 2 Theorem (T ): Theorems constitute pre-defined
prior knowledge. A theorem comprises a set of premise con-
ditions and a set of conclusion conditions, both of which
are collections of conditions. For instance, the parallel’s
transitivity can be expressed as ”Parallel(AB,CD) & Paral-
lel(CD,EF) → Parallel(AB,EF)”. The collection of all such
theorem definitions forms the Prior Knowledge Base TKB.
Definition 3 Goal (G): Goal represents the objective of ge-
ometric problem solving, which can be considered a special
form of condition, such as ”Value(MeasureOfAngle(ABC))”
or ”Relation(Parallel(AB,CD))”.
Definition 4 Hypergraph (H): The solution hypergraph,
defined as H = (C, T,G), is a directed hypergraph with
known conditions as hypernodes and applied theorems as hy-
peredges. It describes the structured process of geometric

problem solving. A successful application of a theorem can
add several new hypernodes to the hypergraph and construct
a new hyperedge from a set of premise to a set of new con-
clusion.

The key for GPS lies in the system’s ability to accurately
predict the theorem to be applied in the current problem state.
Most existing methods [Lu et al., 2021; Chen et al., 2021]
formulate the theorem prediction task as a generative task,
where the parameter optimization objective is to maximize
the conditional probability of the next theorem ti given the
previously used theorems {t1, t2, . . . , ti−1} and the initial hy-
pergraph h0, as shown in Formula 1. These methods fail to
capture the intermediate states hi of the problem, thus cannot
fully utilize the intermediate results.

θ∗ = argmax
θ

N∏
i=1

P (ti | t1, t2, . . . , ti−1, h0; θ) (1)

Benefiting from the FormalGeo formal system, we can ob-
tain and update the problem state in real time. We formu-
late the theorem prediction task as a multi-class classification
task, where the parameter optimization objective is to maxi-
mize the conditional probability of the next theorem ti given
the current problem state hi−1, as shown in Formula 2.

θ∗ = argmax
θ

N∑
i=1

P (ti | hi−1; θ) (2)

The geometric problem-solving process can be modeled
as a Markov Decision Process [Peng et al., 2023], where
the problem solution hypergraph constitutes the state space
H = {hi|i = 0, 1, 2, . . . }, and the geometry theorem set
constitutes the action space T = {ti|i = 1, 2, . . . }. Given
a formal representation of a geometric problem, FormalGeo
constructs it into a hypergraph h. The hypergraph h0 contains
only several unconnected initial condition nodes. Our task is
to provide a sequence of theorem t, where each application of
ti adds new hyperedges and hypernodes to hi−1, thus extends
hi−1 to hi, ultimately constructing a reachable path from the
initial conditions to the problem-solving goal.

2.2 Predict-Apply Cycle
We have constructed a system comprising a formal envi-

ronment and a neural agent to accomplish the aforementioned
task. This system involves an interaction of two parts, which
we refer to as the Predict-Apply Cycle (PAC), as illustrated
in Figure 1. The algorithm is described in Algorithm 1. The
AI agent acquires the current solution hypergraph hi−1 of the
geometric problem and predicts the theorem ti required for
solving the problem. The formalized environment then ap-
plies the theorem ti, adds new hyperedges and hypernodes,
and updates hi−1 to hi. This interactive process is repeated
continuously until the problem is solved or the hypergraph
ceases to update.

3 Neural-Symbolic Solver
This section introduces our proposed neural-symbolic archi-
tecture, which includes a symbolic formal system built on
FormalGeo and a hypergraph neural network based on atten-
tion mechanisms.



Algorithm 1 Predict-Apply cycle
Input: probem: geometric problems described using formal-
ized language.
Output: theorem seqs: theorem sequence for problem
solving.

1: Initialize env and agent.
2: Initialize theorem seqs as None.
3: Initialize applied as True.
4: env.init hypergraph(problem)
5: while applied do
6: hypergraph← env.get hypergraph()
7: theorem← agent.predict(hypergraph)
8: applied← env.apply(theorem)
9: if env.solved is True then

10: theorem seqs← env.get theorem seqs()
11: break
12: end if
13: end while

3.1 Symbolic System
Most Existing work has failed to establish a consistent, trace-
able, and extensible formal system. We have developed a ge-
ometric symbolic formal system based on FormalGeo [Zhang
et al., 2024c]. FormalGeo employs Geometry Definition Lan-
guage to define the formal system and uses Condition Decla-
ration Language to declare the topological structure of geo-
metric problems, conditions, and problem-solving goals. It
first transforms the problem-solving process into the applica-
tion of geometric theorems, and subsequently further trans-
forms the application process of these theorems into the exe-
cution of Geometric Predicate Logic, thereby enabling trace-
able relational reasoning and algebraic equation solving.

The conditions of geometric problems are stored as quintu-
ples comprising condition ID, condition type, condition body,
premises, and theorem. Based on the premises and theorems,
we group and structure these conditions, organizing them into
a hypergraph with the condition body as hypernodes and the
theorem as hyperedges. A set of premise hypernodes and a
set of conclusion hypernodes are connected by a theorem hy-
peredge, thus forming a hypergraph.

This formal system bridges the gap between humans and
computers, ensuring that GPS is both human-readable and
mathematically rigorous. A more detail discussion of For-
malGeo can be found in [Zhang et al., 2024a].

3.2 Hypernode Encoding
Our task is to create a neural solver that can predict the the-
orems needed for GPS based on the hypergraph hi given by
the current formal environment. This requires encoding the
hypernode and its neighboring hyperedge into a real-valued
vector that can be processed by neural networks, which can
be viewed as a sentence embedding problem [Li et al., 2020].
The Transformer [Vaswani et al., 2017] and its derivative
network structures are considered powerful architectures for
modeling sequential data but are not capable of directly pro-
cessing graph-structured data. Inspired by Graphormer [Ying
et al., 2021], We first decompose the semantic and structural
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Figure 2: The architecture of hypernode encoder. It adopts an
encoder-decoder architecture and uses a self-supervised approach to
reconstruct the input at hypernode decoder.

information in graph-structured data into a serialized form,
and then input and embed it at the appropriate positions in
the network.

For a directed hypergraph h containing n hypernodes, we
can uniquely represent the hypergraph using the hypernode
vector c = (c1, c2, . . . , cn) and the hyperedge theorem adja-
cency matrix Tn×n. ci represents a condition declaration sen-
tence, composed of a predicate and some individual words,
such as ”RightTriangle(ABC)”. Formal languages and math-
ematical symbols have domain-specific meanings [Ning et
al., 2023] and cannot be simply tokenized using natural lan-
guage tokenization methods. We have designed the Formal-
Geo tokenizer for neural networks, where ci is ultimately rep-
resented as a token list, such as [RightTriangle,A,B,C]. The
adjacency matrix Tn×n is an extremely sparse matrix, where
the element tij indicates whether there is a hyperedge con-
necting hypernode ci and cj . When embedding the row vec-
tors ti of the adjacency matrix T , due to its extremely sparse
nature, traditional methods would result in the idleness and
waste of a large number of neurons. Inspired by the seg-
ment encoding of BERT [Devlin et al., 2019], we remove
the empty nodes in ti and use position encoding and structure
encoding to preserve its structural information. For example,
a hyperedge ti = [a, 0, 0, 0, b, 0, 0, 0, c, 0, 0] is transformed
into ti = [a, b, c], pei = [1, 2, 3], and sei = [1, 5, 9].

For a hypernode ci and its incident hyperedge ti, we in-
put them into the hypernode encoder, which transforms them
into an m-dimensional vector Hi, as shown in Formula 3,
where HE represents the hypernode encoder and⊕ represents
vector concatenation. We construct the hypernode encoder
based on the Transformer architecture, as illustrated in Fig-
ure 2. The hypernode encoder adopts an encoder-decoder ar-
chitecture and uses a self-supervised approach to reconstruct
the input at decoder, thereby forcing the model to learn how
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to embed semantic and structural information into a fixed-
length vector. At the output stage of the encoder, the average
of the word sequence embeddings is taken to represent the
overall sentence encoding [Yan et al., 2021]. After passing
through the hypernode encoder, the solution hypergraph h is
ultimately encoded into the hypergraph matrix Hn×m and the
goal g ∈ Rm.

Hi = HE(ci + pei)⊕ HE(ti + pei + sei) (3)

3.3 HyperGNet Architecture
As shown in Figure 3, HyperGNet adopts an encoder-decoder
architecture. We use the transformer encoder modules to con-
struct the HyperGNet encoder, and task-specific attention to
construct HyperGNet decoder. The solving process of prob-
lems can be described with a hypergraph H = (C, T,G),
where C and T are processed through hypernode encoder
and HyperGNet encoder to obtain the hypergraph encoding
H

(N)
n×m. The goal G can be considered as a special hypernode

and embedded into an m-dimensional vector g.

TSA(Q,K, V ) = softmax
(
Q×KT /

√
dk

)
× V (4)

A task-specific attention layer is used to extract key in-
formation relevant to solving current problem, as shown in
Formula 4, where Q = gW (Q), K = H

(N)
n×mW (K) and

V = H
(N)
n×mW (V ). The other modules of HyperGNet de-

coder align with Transformer [Vaswani et al., 2017]. In sum-
mary, hypergraph H is encoded by the hypernode encoder
into hypernode embedding Hn×m and goal embedding g,
which are fed into HyperGNet to predict the theorem prob-
ability ˆ⃗y.

For the solution hypergraph H , the application process of
theorems can be represented as a directed acyclic graph. Mul-
tiple alternative theorems may exist at intermediate stages of

GPS. We formulate theorem prediction as multi-class classi-
fication, decomposing it into binary classification tasks with
cross-entropy loss. The loss function is shown in Formula 5,
where ŷ is the predicted theorem selection probability, y is
the ground truth, σ is the sigmoid activation function, and M
is the number of defined theorems in TKB.

L = − 1

M

M∑
i=1

yi · log(σ(ŷi))+ (1−yi) · log(1−σ(ŷi)) (5)

4 Experiments
This section presents the performance of our neural-symbolic
architecture on FormalGeo7K [Zhang et al., 2024c], Geome-
try3K [Lu et al., 2021] and GeoQA [Chen et al., 2021]. We
compare and analyze the differences in PSSR and TPA be-
tween existing methods and the approach proposed in this
paper. Additionally, we conduct ablation experiments on the
training method and model architecture of HyperGNet.

4.1 Dataset
We conducted experiments on FormalGeo7K [Zhang et al.,
2024c], Geometry3K [Lu et al., 2021] and GeoQA [Chen et
al., 2021], partitioning it into a training set, validation set, and
test set at a ratio of 3:1:1. We removed the hypernodes from
the solution hypergraph, leaving only the hyperedges, which
form a directed acyclic graph (DAG) of theorems. Any the-
orem sequence t obtained by topological sorting of the theo-
rem DAG can solve the problem. We randomly topological
sort the theorem DAG and obtained each step’s problem state
hi−1 and the set of applicable theorems ti, yielding data pairs
(hypergraph, applicable theorems). This process ultimately
generated 20,571 training data pairs (from 4,079 problems),
7,072 validation data pairs (from 1,370 problems), and 7,046
test data pairs (from 1,372 problems).

4.2 Evaluation Metrics
We use Theorem Prediction Accuracy (TPA) and Problem-
Solving Success Rate (PSSR) as the evaluation metrics to as-
sess different methods. Their definitions are as follows:
TPA: Given the current problem state hi−1, the model is
tasked with predicting the theorem ti required for solving the
problem. This metric captures the theorem prediction accu-
racy of the model at each step of the problem-solving process.
PSSR: PSSR is the proportion of successfully solved prob-
lems to the total number of problems. Solving a geomet-
ric problem requires several theorems, which the model must
predict correctly and in the correct order. The predictions are
then verified by the formalized system to determine whether
the problem is successfully solved. This metric evaluates the
model’s overall problem-solving capability.

4.3 Benchmark Methods
We evaluated a variety of methods on the FormalGeo7K
dataset, which include: 1. traditional pure symbolic methods,
such as Forward Search and Backward Search; 2. neural-
symbolic methods (neural language models integrated with
the FormalGeo symbolic system), such as T5-small with
FGeo and BART-base with FGeo; 3. pure-neural meth-
ods (large language models), including DeepSeek-v3; 4.



Method Strategy Total L1 L2 L3 L4 L5 L6

Forward Search [Zhang et al., 2024b] RS 39.71 58.47 41.01 34.16 16.4 5.45 4.79
Backward Search [Zhang et al., 2024b] BFS 35.44 66.43 34.98 11.78 6.56 6.09 1.03

T5-small [Raffel et al., 2020] with FGeo BS 36.14 49.90 34.84 34.59 23.57 8.06 3.33
BART-base [Lewis et al., 2020] with FGeo BS 54.00 73.90 56.12 50.38 26.75 16.13 8.33

DeepSeek-v3 [DeepSeek-AI, 2024] - 60.79 75.99 56.38 63.91 43.31 32.26 28.33

Inter-GPS [Lu et al., 2021] BS 60.50 76.20 63.30 60.90 39.49 17.74 15.00
NGS [Chen et al., 2021] BS 62.60 62.22 64.97 72.79 57.47 56.41 36.59

DualGeoSolver [Xiao et al., 2024] BS 62.11 62.96 67.80 65.44 60.92 53.85 34.15
FGeo-TP [He et al., 2024] RS 80.86 96.43 85.44 76.12 62.26 48.88 29.55

FGeo-DRL [Zou et al., 2024] BS 80.85 97.61 91.88 70.82 57.55 36.17 27.59

FGeo-HyperGNet GB 88.36 96.24 91.76 87.59 82.17 56.45 56.67

Table 1: PSSR of different methods on the FormalGeo7K dataset. Strategy represents different candidate theorem selection methods: BFS
stands for Breadth-First Search. DFS stands for Depth-First Search. RS stands for Random Search. BS stands for Beam Search with
beam size as k (k = 5). At each round, the top k theorems with the highest probabilities are selected, defined as TOPk{pi,j |pi,j =

pi · p(net,i)
j }, i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , |T |}, Where pi is the cumulative probability before the beam i, and p

(net,i)
j is the selection

probability of theorem j predicted by HyperGNet. GB stands for Greedy Beam, which removes any theorems that cannot be applied and adds
new applicable theorems to the beam, ensuring that the number of beam heads remains constant. The timeout is set to 600 seconds.

neural-symbolic systems specifically designed for GPS, such
as Inter-GPS, NGS, DualGeoSolver, FGeo-TP, and FGeo-
DRL; and 5. our proposed neural-symbolic system, FGeo-
HyperGNet.

We also compare the performance of 2 state-of-the-art
problem-solving methods on the Geometry3K dataset, Geo-
DRL [Peng et al., 2023] and E-GPS [Wu et al., 2024]; 2 state-
of-the-art methods on the GeoQA dataset, SCA-GPS [Ning et
al., 2023] and DualGeoSolver [Xiao et al., 2024]; 2 state-of-
the-art methods on the FormalGeo7K dataset, FGeo-TP [He
et al., 2024] and DFE-GPS [Zhang et al., 2024d]; as well as
the performance of FGeo-HyperGNet on the three aforemen-
tioned datasets.

The other methods in the comparison use their original
parameter settings. For HyperGNet, we first employ a self-
supervised approach to pre-train the hypernode encoder. This
encoder is then integrated into HyperGNet, allowing for end-
to-end training. We set the hidden dimension dmodel of Hy-
perGNet to 256, the number of layers N to 4, and the number
of attention heads h to 4. Under this configuration, Hyper-
GNet has 20.38 million parameters, significantly fewer than
the other methods. During training, we optimize the model
parameters using the Adam optimizer, with a learning rate of
10−5, a batch size of 16, and training for 20 epochs. A single
training epoch on a GeForce RTX 4090 takes approximately
30 minutes.

4.4 Experimental Results
According to the length of the annotated theorem l, we
roughly categorize the difficulty of the problems into 6 lev-
els, denoted as L1(l ≤ 2), L2(3 ≤ l ≤ 4), L3(5 ≤ l ≤ 6),
L4(7 ≤ l ≤ 8), L5(9 ≤ l ≤ 10), L6(l ≥ 11). In Table 1, we
compare various methods across multiple levels of difficulty
on the FormalGeo7K dataset.

Among all evaluated methods, FGeo-HyperGNet achieves
the highest overall PSSR of 88.36% and consistently excels

Method Geometry3K GeoQA FormalGeo7K

GeoDRL 89.40 - -
E-GPS 90.40 - -

SCA-GPS - 64.10 -
DualGeoSolver - 65.20 -

FGeo-TP - - 80.86
DFE-GPS - - 82.38

FGeo-HyperGNet 91.99 85.64 88.36

Table 2: PSSR of existing state-of-the-art methods and FGeo-
HyperGNet on different datasets.

across all difficulty levels. While most methods experience a
significant drop in performance as the problem difficulty in-
creases (particularly for L5 and L6), FGeo-HyperGNet main-
tains robust results, achieving 56.67% on L6, compared to
36.59% by second-best NGS. This highlights its ability to
handle challenging geometric problems more effectively than
existing approaches.

Traditional search methods achieve limited performance.
(Large) Language models perform better but their inability
to model geometric structures and relationships limits their
ability. FGeo-HyperGNet’s key advantage lies in its integra-
tion of neural and symbolic components. AI-driven heuris-
tic search ensures efficient theorem selection, significantly
contributing to the method’s superior performance, especially
on challenging problems. This design enables it to model
long-range dependencies between geometric conditions and
theorems effectively. Compared to other neural-symbolic
systems, FGeo-HyperGNet significantly outperforming the
second-best method, FGeo-TP, by 7.5%.

We also evaluate the performance of FGeo-HyperGNet
against several existing state-of-the-art methods on three
datasets: Geometry3K, GeoQA, and FormalGeo7K, as shown



Method Beam Size TPA PSSR

1 71.58 44.86
FGeo-HyperGNet 3 88.91 62.93

5 93.50 67.79

1 70.73 41.57
-w/o Pretrain 3 87.36 59.36

5 92.21 64.43

1 70.33 39.64
-w/o SE 3 88.14 60.21

5 92.48 64.14

1 68.11 36.93
-w/o Hypergraph 3 87.38 57.57

5 92.00 63.07

Table 3: Ablation study results of HyperGNet on the FormalGeo7k
dataset. All ablation experiments used the BS strategy, with a time-
out set to 60 seconds.

in Table 2. FGeo-HyperGNet consistently outperforms all
competing methods, achieving the highest PSSR across all
three datasets. Notably, FGeo-HyperGNet achieves a PSSR
of 85.64%, significantly outperforming the current state-of-
the-art (DualGeoSolver with 65.20%) by 20.44%, which
largely benefits from our proposed formalization approach
and neural-symbolic system. FGeo-HyperGNet captures the
intermediate states of problems, thereby more accurately
modeling the mapping from problems to theorems.

4.5 Ablation study
We conduct ablation experiments on the training method and
model architecture of HyperGNet, as shown in Table 3. The
term -w/o Pretrain indicates the removal of the pretraining
step, directly proceeding to end-to-end training. -w/o SE de-
notes the exclusion of the structural encoding in Formula 3. -
w/o Hypergraph refers to the removal of the hypergraph struc-
tural information, where the node sequence is used to rep-
resent the problem state. This is implemented by, without
altering the network architecture, omitting the hyperedge in-
formation and inputting only the node data as sequential in-
formation into the network.

We observe that as the beam size increases, both TPA and
PSSR improve. To assess the effectiveness of pretraining,
we removed the pretraining stage and found that TPA and
PSSR decreased across all beam size settings. This demon-
strates that pretraining is crucial for enabling the hypernode
encoder to retain the semantic information of geometric con-
ditions. To evaluate the importance of graph-structured data
in the context of GPS, we removed the graph structure in-
formation and conducted experiments. As shown in Table 3,
we found that both TPA and PSSR decreased, regardless of
whether the graph structure was removed alone or if both the
graph structure and semantic information were entirely re-
moved (i.e., treating the data as sequential). This indicates
that graph-structured data is important for the current task.
The historical information of theorem applications and the re-
lationships between conditions contribute to the improvement

Case 1: ∠DCA=40°, the center of ⊙Ω is O, the diameter of ⊙Ω 

is AB, the tangent to circle Ω is CD. Find the measure of ∠OBD.

GT：245, 34, 34, 27, 237, 237, 108, 110

PD：34, 245, 207, 206

Find(∠ODC) Find(OD=OB)

Find(∠COD)

Find(∠DOB) Find(∠BDO=∠OBD)

Find(∠OBD)

Find(∠ODC)

Find(∠COD)

Find(∠OBD)

Property of Tangent (245) Property of Radius (237)

Known Conditions

 Property of Triangle (34)

Complementary Angle (27)

Isosceles Triangle Judgment (108)

Property of Isosceles Triangle (110)

 Property of Triangle (34)

Known Conditions
Property of Tangent (245)

 Property of Triangle (34)

 Property of Circumference Angle (207)

 Property of Center Angle (206)

Annotated Solving Steps: FGeo-HyperGNet Solving Steps:

GT：35, 207, 206, 237, 36, 221, 238, 241

Case 2: AB=15, AC=12, 

AD=10, AD is the altitude of 

triangle ABC, O is the center 

of circle Ω. Find AE.

Too many triangles lead to timeout when 

using the sine (35) and cosine (36) theorems.
Key theorem missing.

GT：207, 207, 242, 35, 241, 221

PD：207, 206, 241, 221, 246, ...

Case 3: AB=2, ∠ACB=30°, 

O is the center  ⊙Ω, the 

diameter of ⊙Ω is AD. 

Find the radius of ⊙Ω.

PD：35, 36, 237, 207, 206, 241, ...

Ω

Ω

Ω

Figure 4: Typical cases. Case 1 is a positive case that demonstrates
the advantages of FGeo-HyperGNet. Case 2 and 3 are negative
cases, providing the reasons why the problem cannot be solved.

of TPA and PSSR.

4.6 Case Analysis
We select some representative cases in Figure 4 for further
analysis. Taking Case 1 as an example, FGeo-HyperGNet not
only provides the solution to the problem but also generates
a detailed solution hypergraph. Notably, FGeo-HyperGNet
produces a more concise solution process than the human an-
notations. However, there are some limitations. We found
that during the geometric problem-solving process, the time
required for solving systems of equations is much longer
than that for relational reasoning. The majority of problem-
solving failures are due to equation-solving timeouts, espe-
cially for theorems involving trigonometric functions, as il-
lustrated in Case 2. Other failures occur because these types
of problems are too rare, and the model is unable to ade-
quately learn the solution methods for the minority class from
the training data, as shown in Case 3.

5 Conclusions
This paper proposes a neural-symbolic architecture for solv-
ing formalized plane geometry problems. We are the first
to construct a GPS system that takes problem images and
text as input, produces a human-like solution, and ensures
the complete correctness of the solution. We also achieve
state-of-the-art results with a TPA of 93.50% and a PSSR of
88.36% on the FormalGeo7K dataset. In the future, we plan
to integrate reinforcement learning into the neural component
and auxiliary construction into the symbolic component to
achieve an automatic IMO-level GPS without human super-
vision.
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