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Abstract. This paper formally defines the concepts of intra-token in-
formation mixing and inter-token information mixing, while proposing a
visualization analysis method based on attention matrix forward prop-
agation. The proposed method achieves interpretable analysis of Trans-
former model decision-making processes by quantitatively measuring the
contribution of different input tokens to model outputs. To validate
the method’s effectiveness, we constructed an image classification model
based on the ViT and conducted experiments on the CIFAR-10 dataset.
The proposed method generated attention heatmaps that visualize the
model’s focus regions during the classification process.

Keywords: Transformer · Attention visualization · Interpretability.

1 Introduction

The Transformer [8] architecture revolutionized deep learning by replacing tra-
ditional RNN [2]/CNN [6] paradigms with self-attention mechanisms, thereby
establishing the foundation for modern large-scale models. Subsequent devel-
opments, including BERT [3] and GPT [1] built upon Transformer, propelled
natural language processing into the pre-training era. The Vision Transformer
(ViT) [4] further demonstrated Transformer’s capability to surpass CNN per-
formance, emerging as a new paradigm in computer vision. Post-2021 witnessed
exponential growth in large model research, with Transformer becoming the
core architecture and spawning numerous efficient variants. Current research
continues to advance Transformer-based architectures across multiple frontiers,
including multimodal learning (e.g., CLIP [7]) and reasoning (e.g., CoT [9]),
maintaining its position as one of the most active research domains in AI.

Deep neural networks represented by Transformer models are often regarded
as ”black boxes” due to their complex nonlinear structures and massive parame-
ters, making the decision-making process between inputs and outputs inherently
uninterpretable. This characteristic typically exhibits an inverse relationship be-
tween model performance and interpretability. Such lack of interpretability raises
significant concerns in high-stakes domains like healthcare and finance. However,
the attention mechanism possesses intrinsic interpretability advantages by ex-
plicitly modeling correlation weights between input elements, thereby providing
a transparent window into model decisions.
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This paper first reviews the computational process of standard Transformer
architecture, then formally defines the concepts of intra-token information mix-
ing and inter-token information mixing. Building upon this foundation, we pro-
pose an attention matrix forward propagation method to compute global atten-
tion relationships between outputs and inputs. Finally, we implement a ViT-
based image classifier and conduct experiments on the CIFAR-10 dataset [5].
The proposed method generates attention heatmaps that visualize the model’s
focus regions during classification.

2 Transformer Encoder Layer

This section revisits the computational process of the Transformer Encoder
Layer, while adopting a modified notation and formulation scheme distinct from
the original paper.
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Fig. 1. Transformer Encoder Layer (Left) and ViT-CIFAR (right)

As illustrated in Figure 1, the standard Transformer Encoder Layer pro-
cesses an input X ∈ Rn×dmodel representing embedded representations of one
CLS token and n − 1 image tokens. The input X first undergoes three linear
transformations WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk and WQ ∈ Rdmodel×dv to
derive the query Q ∈ Rn×dk , key K ∈ Rn×dk , and value V ∈ Rn×dv matrices,
as formalized in Equations 1-3.

Q = XWQ (1)
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K = XWK (2)

V = XWV (3)

The self-attention scores A ∈ Rn×n are computed using Formula 4, and the
self-attention layer output output Y ∈ Rn×dv is obtained via Formula 5.

A = softmax(
QKT

√
dk

) (4)

V ′ = AV (5)

Additionally, Multi-Head Attention (MHA) is employed to projectX into dif-
ferent feature subspaces. Here, we adopt a formulation different from the original
Transformer paper, as shown in Equation 7, where V ′

i is derived from Formula 5,
h is the number of heads, weight WO

i ∈ Rdv×dmodel and output X ′ ∈ Rn×dmodel .

X ′ =

h∑
i=1

V ′
i W

O
i (6)

The above describes the computational process of the Multi-Head Attention
Sublayer. The output of this sublayer is then passed through a residual connec-
tion followed by Layer Normalization, as formalized in Equations 7.

Y = LayerNorm(X +X ′) (7)

Layer Normalization (LayerNorm) operates exclusively on the feature di-
mension within a single token, and is completely independent of other tokens, as
formalized in Equations 8, where µi and σ2

i represent the mean and variance of
each feature dimension in xi respectively, γ and β is a learnable scaling factor,
and ϵ is a small constant to prevent division by zero.

yi = γ · xi − µi√
σ2
i + ϵ

+ β, ∀xi = X ′[i] +X[i], i = 1, 2, . . . , n (8)

The input is then passed through a feedforward neural network with ReLU
activation, as shown in Formula 9, where W1 ∈ Rdmodel×dff , W2 ∈ Rdff×dmodel ,
b1 ∈ Rdff and b2 ∈ Rdmodel are the learnable weights and bias of the linear
transformation. A residual connection and layer normalization are subsequently
applied again.

Y ′ = max(0, Y W1 + b1)W2 + b2 (9)

Z = LayerNorm(Y + Y ′) (10)

3 ViT-CIFAR

We propose an image classifier based on the Transformer Encoder Layer and
ViT architecture, with its detailed structure illustrated in the right panel of



4 Xiaokai Zhang.

Figure 1. After passing through the ViT-CIFAR network’s hybrid image feature
processing, the label-relevant features are aggregated into the CLS token. We
extract this CLS token while disregarding the other tokens.

Xcls = X[0] (11)

The CLS token then undergo a linear transformation WL ∈ Rdmodel×l fol-
lowed by softmax normalization to predict the image label across l classes:

X̂label = softmax(XclsW
L) (12)

The loss function is shown in Formula 13, where X̂label is the predicted image
label, Xlabel is the ground truth, σ is the sigmoid activation function.

L = −1

l

l∑
i=1

Xlabel,i · log(σ(X̂label,i)) + (1−Xlabel,i) · log(1− σ(X̂label,i)) (13)

4 Attention Matrix Forward Propagation

We first formally define the concepts of intra-token information mixing and
inter-token information mixing. Given a matrix X ∈ Rn×dmodel composed of
embeddings from n tokens, where each row vector xi represents the dmodel-
dimensional embedding of token i. Left-multiplying matrix X by matrix W ∈
Rk×n is termed inter-token information mixing, where k denotes different modes
of information mixing. Right-multiplying matrix X by matrix W ∈ Rn×d is
termed intra-token information mixing, where d represents the dimensionality of
the new feature space after linear transformation.

Since we focus on the global attention distribution across tokens, we retain
the left-multiplication matrix while ignoring the right-multiplication matrix. Ad-
ditionally, operations on individual tokens, such as LayerNorm and activation
functions, do not alter the inter-token attention distribution and can thus be
disregarded. Substituting Equations 3, 5, and 6 into 15 yields:

Y = LayerNorm(X +

h∑
i=1

AiXWV
i WO

i ) (14)

The symbol
△
≈ represents the computed result after disregarding both intra-

token information mixing and operations on individual tokens, allowing us to
derive Equation (10) as follows:

Y
△
≈ (I +

h∑
j=1

Aj)X (15)

Substituting Formula 9 into 10, we obtain Formula 16. This indicates that
the feedforward layer does not alter the attention weights between tokens.

Z = LayerNorm(Y +max(0, Y W1 + b1)W2 + b2)
△
≈ Y (16)
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Based on the above discussion, we derive the attention forward propagation
formula for ViT-CIFAR:

Xlabel

△
≈

1∏
i=N

(I +

h∑
j=1

Aij)X (17)

5 Experiment Results and Discussion

The model has an embedding dimension of 256, 8 attention heads, a dropout
rate of 0.1, and 6 stacked layers. The CIFAR-10 dataset contains 50,000 training
images and 10,000 test images, for which we adopt the original dataset split.
For training, we employ the Adam optimizer with a batch size of 100, a learning
rate of 0.0001, and train for 100 epochs. We conducted the training on a single
NVIDIA GeForce RTX 4070 GPU.

Under this configuration, the training process took approximately 10 minutes
and achieved a classification accuracy of 99.22% on the test set. Subsequently, we
evaluated the proposed attention visualization method using the trained model
and several test set samples.

Fig. 2. Attention Visualization.

The experimental results indicate that the proposed method does not ap-
pear to demonstrate interpretability as intended. This limitation could stem
from either inherent flaws in the methodology itself or potential issues in the im-
plementation. Subsequent efforts will focus on refining the theoretical framework
and improving the programming implementation.
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6 Conclusion

This paper proposes an attention visualization method and conducts experiments
on the CIFAR-10 dataset. However, the experimental results demonstrate that
this is not an effective attention visualization approach. I will further refine both
the theoretical analysis and engineering experiments to improve this method
comprehensively.
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